\(\int \frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x^2} \, dx\) [61]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 118 \[ \int \frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x^2} \, dx=-\frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x}+\frac {c \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))^2}{2 b \sqrt {-1+c x} \sqrt {1+c x}}+\frac {b c \sqrt {d-c^2 d x^2} \log (x)}{\sqrt {-1+c x} \sqrt {1+c x}} \]

[Out]

-(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/x+1/2*c*(a+b*arccosh(c*x))^2*(-c^2*d*x^2+d)^(1/2)/b/(c*x-1)^(1/2)/(c*
x+1)^(1/2)+b*c*ln(x)*(-c^2*d*x^2+d)^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {5924, 29, 5893} \[ \int \frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x^2} \, dx=\frac {c \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))^2}{2 b \sqrt {c x-1} \sqrt {c x+1}}-\frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x}+\frac {b c \log (x) \sqrt {d-c^2 d x^2}}{\sqrt {c x-1} \sqrt {c x+1}} \]

[In]

Int[(Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/x^2,x]

[Out]

-((Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/x) + (c*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x])^2)/(2*b*Sqrt[-1
+ c*x]*Sqrt[1 + c*x]) + (b*c*Sqrt[d - c^2*d*x^2]*Log[x])/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 5893

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]), x_Symbol]
 :> Simp[(1/(b*c*(n + 1)))*Simp[Sqrt[1 + c*x]/Sqrt[d1 + e1*x]]*Simp[Sqrt[-1 + c*x]/Sqrt[d2 + e2*x]]*(a + b*Arc
Cosh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2] && NeQ[n
, -1]

Rule 5924

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(
f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcCosh[c*x])^n/(f*(m + 1))), x] + (-Dist[b*c*(n/(f*(m + 1)))*Simp[Sqrt[d
 + e*x^2]/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])], Int[(f*x)^(m + 1)*(a + b*ArcCosh[c*x])^(n - 1), x], x] - Dist[(c^2/
(f^2*(m + 1)))*Simp[Sqrt[d + e*x^2]/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])], Int[(f*x)^(m + 2)*((a + b*ArcCosh[c*x])^n
/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] &&
 LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x}+\frac {\left (b c \sqrt {d-c^2 d x^2}\right ) \int \frac {1}{x} \, dx}{\sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (c^2 \sqrt {d-c^2 d x^2}\right ) \int \frac {a+b \text {arccosh}(c x)}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{\sqrt {-1+c x} \sqrt {1+c x}} \\ & = -\frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x}+\frac {c \sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))^2}{2 b \sqrt {-1+c x} \sqrt {1+c x}}+\frac {b c \sqrt {d-c^2 d x^2} \log (x)}{\sqrt {-1+c x} \sqrt {1+c x}} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 0.42 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.16 \[ \int \frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x^2} \, dx=-\frac {a \sqrt {d-c^2 d x^2}}{x}+a c \sqrt {d} \arctan \left (\frac {c x \sqrt {d-c^2 d x^2}}{\sqrt {d} \left (-1+c^2 x^2\right )}\right )+\frac {1}{2} b c \sqrt {d-c^2 d x^2} \left (-\frac {2 \text {arccosh}(c x)}{c x}+\frac {\text {arccosh}(c x)^2+2 \log (c x)}{\sqrt {\frac {-1+c x}{1+c x}} (1+c x)}\right ) \]

[In]

Integrate[(Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/x^2,x]

[Out]

-((a*Sqrt[d - c^2*d*x^2])/x) + a*c*Sqrt[d]*ArcTan[(c*x*Sqrt[d - c^2*d*x^2])/(Sqrt[d]*(-1 + c^2*x^2))] + (b*c*S
qrt[d - c^2*d*x^2]*((-2*ArcCosh[c*x])/(c*x) + (ArcCosh[c*x]^2 + 2*Log[c*x])/(Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c
*x))))/2

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(285\) vs. \(2(102)=204\).

Time = 0.94 (sec) , antiderivative size = 286, normalized size of antiderivative = 2.42

method result size
default \(-\frac {a \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{d x}-a \,c^{2} x \sqrt {-c^{2} d \,x^{2}+d}-\frac {a \,c^{2} d \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{\sqrt {c^{2} d}}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \operatorname {arccosh}\left (c x \right )^{2} c}{2 \sqrt {c x -1}\, \sqrt {c x +1}}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \operatorname {arccosh}\left (c x \right ) c}{\sqrt {c x -1}\, \sqrt {c x +1}}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \operatorname {arccosh}\left (c x \right ) x \,c^{2}}{\left (c x -1\right ) \left (c x +1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \operatorname {arccosh}\left (c x \right )}{x \left (c x -1\right ) \left (c x +1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \ln \left (1+\left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )^{2}\right ) c}{\sqrt {c x -1}\, \sqrt {c x +1}}\) \(286\)
parts \(-\frac {a \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{d x}-a \,c^{2} x \sqrt {-c^{2} d \,x^{2}+d}-\frac {a \,c^{2} d \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{\sqrt {c^{2} d}}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \operatorname {arccosh}\left (c x \right )^{2} c}{2 \sqrt {c x -1}\, \sqrt {c x +1}}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \operatorname {arccosh}\left (c x \right ) c}{\sqrt {c x -1}\, \sqrt {c x +1}}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \operatorname {arccosh}\left (c x \right ) x \,c^{2}}{\left (c x -1\right ) \left (c x +1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \operatorname {arccosh}\left (c x \right )}{x \left (c x -1\right ) \left (c x +1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \ln \left (1+\left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )^{2}\right ) c}{\sqrt {c x -1}\, \sqrt {c x +1}}\) \(286\)

[In]

int((a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/x^2,x,method=_RETURNVERBOSE)

[Out]

-a/d/x*(-c^2*d*x^2+d)^(3/2)-a*c^2*x*(-c^2*d*x^2+d)^(1/2)-a*c^2*d/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*
x^2+d)^(1/2))+1/2*b*(-d*(c^2*x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*arccosh(c*x)^2*c-b*(-d*(c^2*x^2-1))^(1/
2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*arccosh(c*x)*c-b*(-d*(c^2*x^2-1))^(1/2)*arccosh(c*x)*x/(c*x-1)/(c*x+1)*c^2+b*(-
d*(c^2*x^2-1))^(1/2)*arccosh(c*x)/x/(c*x-1)/(c*x+1)+b*(-d*(c^2*x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*ln(1+
(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))^2)*c

Fricas [F]

\[ \int \frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x^2} \, dx=\int { \frac {\sqrt {-c^{2} d x^{2} + d} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}}{x^{2}} \,d x } \]

[In]

integrate((a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/x^2,x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*d*x^2 + d)*(b*arccosh(c*x) + a)/x^2, x)

Sympy [F]

\[ \int \frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x^2} \, dx=\int \frac {\sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {acosh}{\left (c x \right )}\right )}{x^{2}}\, dx \]

[In]

integrate((a+b*acosh(c*x))*(-c**2*d*x**2+d)**(1/2)/x**2,x)

[Out]

Integral(sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*acosh(c*x))/x**2, x)

Maxima [F]

\[ \int \frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x^2} \, dx=\int { \frac {\sqrt {-c^{2} d x^{2} + d} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}}{x^{2}} \,d x } \]

[In]

integrate((a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/x^2,x, algorithm="maxima")

[Out]

-(c*sqrt(d)*arcsin(c*x) + sqrt(-c^2*d*x^2 + d)/x)*a + b*integrate(sqrt(-c^2*d*x^2 + d)*log(c*x + sqrt(c*x + 1)
*sqrt(c*x - 1))/x^2, x)

Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x^2} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/x^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{x^2} \, dx=\int \frac {\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )\,\sqrt {d-c^2\,d\,x^2}}{x^2} \,d x \]

[In]

int(((a + b*acosh(c*x))*(d - c^2*d*x^2)^(1/2))/x^2,x)

[Out]

int(((a + b*acosh(c*x))*(d - c^2*d*x^2)^(1/2))/x^2, x)